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ABSTRACT 
Hatcheries release > 4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North 

Pacific Ocean annually, raising concerns about competition with wild salmon populations. We 

used retrospective scale analysis to investigate how the growth of chum salmon (O. keta) from 

western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild 

pink salmon (O. gorbuscha) from the Russian Far East. Over nearly five decades, the growth of 

Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese 

hatchery chum salmon after accounting for the effects of sex and spring/summer sea surface 

temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on 

the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific 

competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011-2013 was not 

associated with increased growth of Bering Sea chum salmon. However, the abundance of wild 

chum salmon from the Russian Far East increased during that time, possibly obscuring reduced 

competition with hatchery chum salmon. Our results support previous evidence that chum 

salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, 

in the North Pacific, underscoring that the effects of salmon hatchery production transcend 

national boundaries. 

Keywords (7): aquaculture; Bering Sea; competition; growth, hatcheries, North Pacific; 
retrospective analysis 
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1 | INTRODUCTION 

Abundance of Pacific salmon (Oncorhynchus spp.) has been increasing in North America 

and Asia since the late 1970s, with record catches of pink salmon (O. gorbuscha) and chum 

salmon (O. keta) beginning in the 1990s (Ruggerone & Irvine, 2018). Increases in salmon 

abundance are attributed to favorable ocean growing conditions and increased hatchery output, 

resulting in nearly twice as many salmon in the North Pacific Ocean during 1990-2005 compared 

to 1952-1975. Despite favorable ocean conditions, decreases in growth rate and delayed maturity 

have been observed throughout the chum salmon’s range (Ishida, Kaeriyama, McKinnell, & 

Nagasawa 1993; Ruggerone, Agler, & Nielsen 2011). Highly abundant Asian pink and chum 

salmon in the Bering Sea may be driving density-dependent effects on salmon populations from 

around the Pacific Rim (Cline, Ohlberger, & Schindler, 2019). 

Chum salmon are widely distributed in the North Pacific Ocean regardless of stock of 

origin (Seeb, Crane, Kondzela, et al. 2004; Myers, Klovach, Gritsenko, et al. 2007; Myers, 

Walker, Davis, et al., 2009; Sato, Moriya, Azumaya, & Nagoya 2009). Chum salmon head to sea 

soon after emergence and exhibit variable age at maturity, returning to spawn between two and 

five years of age (Salo, 1991). Western Alaska chum salmon migrate between summer feeding 

grounds in the Bering Sea and overwintering grounds in the Gulf of Alaska (Urawa, Sato, Crane, 

Agler, et al. 2009). Japanese chum salmon exhibit a similar migration pattern, with the exception 

of their first winter at sea which is spent in the western North Pacific Ocean (Urawa, 2004). 

These migration patterns may lead to competition between Japanese chum salmon and western 

Alaska chum salmon (after their first year at sea) when prey resources are limited (Ishida et al., 

1993). 

Pink salmon are thought to be strong competitors due to their abundance (accounting for 

~ 60% of anadromous Pacific salmon; Heard, 1991; Ruggerone, Zimmerman, Myers, Nielsen, & 

Rogers, 2003) and high prey consumption rates necessary to sustain rapid growth (Ruggerone & 

Neilsen, 2005). Indirect evidence, based on correlative analysis and strong even/odd-year 

abundance differences associated with the biennial life cycle of pink salmon, has been taken to 

suggest that they can drive variation in zooplankton abundance and species composition (Batten, 

Ruggerone, & Ortiz, 2018), depress the growth of sockeye salmon O. nerka (Ruggerone et al., 

2003; Ruggerone, Agler, Connors, et al., 2016; but see McKinnell & Reichardt, 2012), and 

influence reproductive success in seabirds (Springer & van Vliet, 2014). Direct estimates of pink 
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salmon abundance have been linked to reduced growth of chum salmon (Agler, Ruggerone, 

Wilson, & Mueter, 2013) and productivity of sockeye salmon (Ruggerone & Connors, 2015; 

Ruggerone et al., 2016). Chum salmon, the second-most abundant species of Pacific salmon, also 

appear to exert intraspecific competitive effects on growth within (Ishida et al., 1993) and among 

(Agler et al., 2013; Ruggerone et al., 2011) populations. But with less inter-annual contrast in 

abundance, the competitive effects of chum salmon are more difficult to detect and have received 

less study compared to pink salmon. 

Understanding the effects of competition on growth and life history of Pacific salmon is 

an unresolved but consequential issue, particularly as hatcheries around the Pacific Rim continue 

to release billions of juvenile salmon into the North Pacific every year (NPAFC, 2020). Here, we 

focus on potential competitive effects on chum salmon stocks originating from western Alaska, 

including the watersheds of Norton Sound and the Yukon and Kuskokwim Rivers. Unexpected 

declines in Chinook (O. tshawytscha) and chum salmon populations in western Alaska between 

1997-2002 prompted Alaska to declare a “fisheries disaster” ( Krueger, Zimmerman, & Spaeder, 

2009). Periodic reductions in harvests of salmon in western Alaska continue to have detrimental 

economic and cultural consequences for rural Alaskan communities (Loring & Gerlach, 2010). It 

is therefore important to understand how competition might affect regional chum salmon 

populations. 

We used retrospective analysis of scale growth to investigate the relationship between 

growth of chum salmon, known to originate from the Kuskokwim River in western Alaska or to 

rear in the Bering Sea, and the abundance of Asian pink and chum salmon, specifically two 

major stocks: Japanese hatchery chum salmon, and pink salmon from eastern Kamchatka. The 

correlation between scale radius and fish length allowed us to examine growth during defined 

periods of ocean residence (Yasumiishi, Criddle, Helle, Hillgruber, & Mueter, 2016) and 

therefore make specific predictions about the effects of competition on growth patterns. First, we 

predicted that competition should manifest in reduced growth of Kuskokwim River chum salmon 

from the second year of growth at sea onwards, but not during the first year of growth at sea 

when these populations would have minimal overlap with Asian populations (Agler et al., 2013). 

Second, we examined growth of chum salmon in the Bering Sea in relation to reduced abundance 

of Japanese chum salmon associated with the Tōhoku earthquake and tsunami of 2011. This 

disaster destroyed a number of hatcheries along the Pacific coast, reducing the numbers and 
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subsequent survival of hatchery chum salmon released that spring (Watanabe, Sasaki, Saito, & 

Ogawa, 2015). Hatchery chum salmon releases were reduced in 2012 and 2013 as well (NPAFC, 

2020). We hypothesized that this decrease in hatchery chum salmon production would result in 

increased growth of chum salmon in the Bering Sea during years 2012-2016. In both cases, we 

modeled competition effects while accounting for covariates expected to influence growth in 

chum salmon: sex and age at maturity (Morita, Morita, Fukuwaka, & Matsuda, 2005) and sea-

surface temperatures (SST) in spring (Wechter, Beckman, Andrews, Beaudreau, & McPhee, 

2017) and/or summer (Mueter, Peterman, & Pyper 2002). 

The two-pronged approach we took provided additional insight into competition among 

salmon in the North Pacific. First, by treating the first year of growth of Kuskokwim River chum 

salmon as a ‘counterfactual’ (i.e., little to no competition with Asian pink and chum salmon), we 

were better able to assess the possibility that spurious statistical associations between growth and 

Asian pink and chum salmon abundance indices arose from coinciding time series, which can 

confound inferences about causal effects of competition (e.g., Cunningham, Adkison, & 

Westley, 2018). Second, the sharp decline in Japanese hatchery chum salmon beginning with the 

2011 earthquake provided a way to test for density dependence in the Bering Sea against a 

backdrop of limited contrast in hatchery releases of chum salmon over the previous three decades 

(NPAFC, 2020), which has hampered efforts to understand the competitive effects of hatchery 

chum salmon. 

2  |  METHODS 

2.1 |  Study populations 

We analyzed two collections (‘Kuskokwim River’ and ‘Bering Sea’) of scales from chum 

salmon that rear in the Bering Sea. The Kuskokwim River samples were collected by the Alaska 

Department of Fish and Game (ADF&G) from mature chum salmon captured in commercial and 

test fisheries, using set and drift gillnets with mesh sizes ≤ 15 cm (Bue, 2005), in district W-1 

near Bethel, Alaska, in 1963 and 1968 – 2010 (Figure 1a). This dataset represented fish that 

survived their ocean residence and provided stock-specific information on temporal trends in 

growth. We targeted 25 samples for each sex and dominant age (4 or 5 years old) combination. 
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The Bering Sea dataset was composed of immature and maturing chum salmon caught 

incidentally in the Bering Sea commercial trawl fishery for walleye pollock Gadus 

chalcogrammus. Scales were collected by fishery observers deployed by the National Oceanic 

and Atmospheric Administration (NOAA) on vessels and processing plants (Chilton, 2016). The 

Bering Sea dataset included chum salmon captured within 52oN-60oN, 160oW-175oW (Figure 

1a) from 16-31 July of each year, 2001-2016. This collection included chum salmon from an 

uncharacterized mixture of populations (including hatchery origin) that were intercepted in the 

Bering Sea prior to their homeward migration. Bering Sea sampling was opportunistic, with 

sample sizes depending on the number of salmon intercepted in the pollock fishery. 

2.2 | Scale measurements 

Annual growth increments (Figure 1b) were measured from Kuskokwim chum salmon 

scales (n = 3,742; Supporting Information Table S1) by ADF&G personnel following methods 

described by Hagen, Oxman, & Agler (2001) and Agler et al. (2013). Briefly, images of salmon 

scales were scanned from acetate impressions using an Indus 4601-11 Screen Scan microfiche 

reader and measured using Image-Pro Premier 9.0 software with a customized application. Two 

readers read a majority (91%) of the Kuskokwim scales, and their measurements were similar. A 

randomly selected set of Kuskokwim scales (n = 50) was re-measured by an independent reader 

to test for a reader effect using multiple analysis of variance (MANOVA) of growth 

measurements and reader identity. 

Annual growth increments were measured from Bering Sea chum salmon scales (n = 

1,845; Supporting Information Table S2) as described by AFSC (2017). Acetate impressions 

made of scales mounted on gum cards were scanned at 24x magnification using Z Scan 46-II 

Image Scanner through NOAA’s imaging lab and digitized using Image-Pro Plus 7.0 software 

with a customized application. All Bering Sea scales were measured by a single reader. 

We followed the same scale-quality criteria for both collections. A scale was only 

measured if: 1) the scale came from the “preferred” zone of the fish (Hagen et al., 2001); 2) age, 

sex, and length data could be matched to the scale; 3) the scale was not regenerated; 4) the annuli 

were clearly visible and defined; and 5) the scale could be measured along its longest axis. 

Individual fish lacking scales meeting these criteria were not included in the analysis. We 

followed the growth-increment notation of Morita & Fukuwaka (2006) where g1 indicates growth 
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during the first year at sea, g2 describes growth accrued during the second year at sea, and so on. 

The width of each growth increment was measured as the distance between adjacent annuli 

(Figure 1b). 

2.3 |  Indices of eastern Kamchatka pink salmon and Japanese chum salmon abundance 

Analyses focused on interactions in the Bering Sea between western Alaska chum salmon 

and the dominant stocks of pink and chum salmon during the study period: Japanese chum 

salmon, assumed to be entirely of hatchery origin, and eastern Kamchatka pink salmon primarily 

of wild origin ( Urawa et al., 2004; Urawa et al., 2009; Myers et al., 2007; Irvine & Ruggerone, 

2016). Abundance estimates (Figure 2a,b) were obtained from Irvine & Ruggerone (2016); see 

also Ruggerone & Irvine (2018). Specifically, we used their estimates of the number of salmon 

(including those harvested) returning to coastal waters for Japanese chum salmon and pink 

salmon from the east coast of Kamchatka. These numbers corresponded to the ‘Japan’ column in 

Table 9 and the ‘EKam’ column in Table 8, respectively, of Irvine & Ruggerone (2016). 

Abundance indices were transformed by natural logarithm prior to analysis. Irvine & Ruggerone 

(2016) also provided estimates of total biomass (immature and maturing) of salmon by species 

and region; however, these estimates required additional, untested assumptions and were highly 

correlated with returning adult abundance estimates for both Japanese chum salmon and pink 

salmon from eastern Kamchatka (r > 0.99), so we used returning adult abundance estimates. 

2.4 |   Environmental covariates 

To account for environmental influences on chum salmon growth represented by SST, we 

developed a seasonal index for spring and summer SST in the Bering Sea (Figure 2c, d). 

Temperature data were obtained from NOAA’s Earth System Research Laboratory’s Physical 

Sciences Division website (available from https://www.esrl.noaa.gov/psd/cgi-

bin/data/timeseries/timeseries1.pl), based on National Centers for Environmental 

Prediction/National Center for Atmospheric Research gridded reanalysis data (Kalnay et al., 

1996). Summer SST was averaged across July and August in the central Bering Sea (54.3o-

60.0oN, 170.6o-178.1oW; Figure 1a). This spans an area used by immature chum salmon during 

their summer feeding months (Echave, Eagleton, Farley, & Orsi, 2012) and encompasses both 

https://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl
https://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl
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shelf and slope habitats. Spring SST was based on average SST during April and May at the M2 

mooring buoy in the southeastern Bering Sea (56.87oN, 164.06oW; Figure 1a). 

The timing of the spring phytoplankton bloom in the eastern Bering Sea is strongly 

correlated with sea-ice extent (Sigler, Stabeno, Eisner, Napp, & Mueter, 2014). NOAA’s ice 

retreat index (IRI; available from www.beringclimate.noaa.gov/data/index.php) at the M2 buoy 

did not span our entire study period, so we used the Spring SST index as a proxy for the date of 

sea-ice retreat (justified by linear regression between IRI and mean April/May SST at M2, R2 = 

0.72, p < 0.001; see also Wechter et al., 2017). 

2.5 |   Statistical analyses 

Linear mixed-effects models were fit using the lme4 V1.1-12 package (Bates, Maechler, 

Bolker, & Walker, 2015) in the statistical language R, v. 3.3.3 (R Core Team, 2017). Prior to 

modeling, all variables were normalized (mean = 0, SD = 1) to facilitate comparison of model 

coefficients. Each annual growth increment was normalized separately within each of the two 

datasets (Kuskokwim River and Bering Sea). For objective 1 (growth of Kuskokwim River chum 

salmon), we used the second-order Akaike information criterion (AICc) to compare full models 

to models with all possible combinations of abundance indices and covariates, including null 

models (random effects only). For objective 2, in which we tested for a signal of reduced 

Japanese hatchery releases 2011-2013 on chum salmon growth in the Bering Sea, we used 

likelihood-ratio tests to determine whether a model containing the reduction in releases fit the 

data significantly better than the model without the reduction. Model comparison (for differing 

fixed effects) was conducted on models fit with maximum likelihood; coefficients of selected 

models were estimated with restricted maximum likelihood (Zuur, Ieno, Walker, Saveliev, & 

Smith, 2009). 

Preliminary analysis indicated that spring and summer SSTs were moderately correlated 

in the Kuskokwim dataset (Pearson’s r = 0.53) but more strongly correlated over the Bering Sea 

dataset (Pearson’s r = 0.73). Consequently, we included only spring SST in the models for 

objective 2, as it showed considerable contrast over the study period (Figure 2) and might better 

capture environmental variation affecting chum salmon growth (Wechter et al., 2017). 

http://www.beringclimate.noaa.gov/data/index.php
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To determine if growth of western Alaska chum salmon varied with Asian pink and chum 

salmon abundance (objective 1; Kuskokwim dataset), linear mixed-effects models were fit 

separately for each growth increment g2 - g4 to examine the influence of predictor variables on 

inter-annual variability in growth. The model (1) for each growth increment was: 

giy = β1Sexi + β2Agei + β3SprSSTy + β4SumSSTy + β5JpnChumy + β6KamPinky + 

β7(JpnChum*KamPink)y + αy + εiy (1) 

where giy was the size of the growth increment of individual i during calendar year y of growth, 

Sexi was a factor (male vs. female), Agei (factor: 4 vs. 5 years old) was age at maturity of 

individual i; SprSSTy was spring SST during year y, SumSSTy was summer SST during year y, 

JpnChumy was the abundance of Japanese chum salmon during year y, KamPinky was the 

abundance of eastern Kamchatka pink salmon in year y, and the interaction between JpnChumy 

and KamPinky allowed for the competitive effect of one stock being dependent on the abundance 

of the other stock. The random effect αy accounted for correlated growth among individuals 

growing during the same calendar year y, and εiy represented the residual variance. Age was not 

included in the full model for g4 (present only in age-5 fishes). The random intercepts ay and the 

residuals εiy were assumed to be independent and normally distributed with means of zero and 

variances σa
2 and σε

2, respectively; these assumptions were checked with model diagnostic plots 

(not shown). We repeated the same modeling approach using g1 as a counterfactual response 

variable, hypothesizing no effect of competition with Asian pink and chum salmon. 

To determine if reduced Japanese hatchery chum salmon releases in 2011-2013 resulted 

in increased growth of Bering Sea chum salmon (objective 2; Bering Sea dataset), linear mixed-

effects models were fit separately to each growth increment g2 - g4 to examine the influence of 

reduced hatchery output while accounting for other sources of variation (sex, age, and spring 

SST). Because the decrease in Japanese hatchery outputs occurred 2011-2013, the effect was 

anticipated during growth years 2012-2016. The model (2) for each growth increment was: 

giy = β1Periody + β2Sexi + β3Agei + β4SprSSTy + αy + εiy (2) 
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where Periody was a factor identifying years prior to versus during the period affected by 

decreased hatchery chum salmon releases; Age represented age at capture (including immature 

and maturing fish); and the other variables are as described for the previous model. Age was not 

included in the full model for g4 (present only in age-5 fishes). Likelihood-ratio tests were used 

to determine whether addition of the reduced-release period significantly improved fit over a 

model containing only sex, age, and spring SST; tests were evaluated at α = 0.05. Model 

assumptions, including no temporal autocorrelation, were checked with diagnostic plots (not 

shown). 

3  |  RESULTS 

Sample size varied by population, sex, age class, and growth increment (Supporting 

Information, tables S1 and S2). Target sample size was generally achieved for Kuskokwim River 

chum salmon except for the 1963 and 1969 brood years, which were represented by < 20 

individuals each. No reader effect was found over the entire scale (MANOVA, p = 0.97) or for 

single growth increments (ANOVA, p > 0.5 for all) for Kuskokwim River scales. Bering Sea 

sample sizes ranged from 7 to 120 per sex, year, and growth increment, with g4 tending to have 

fewer samples than g2 and g3. Average sizes of age-specific growth increments showed different 

relationships over time, with only g1 in the Kuskokwim River dataset showing an upward trend, 

and g4 in the Kuskokwim River dataset and g3 in the Bering Sea dataset showing downward 

trends (Supporting Information, figures S1 and S2).  

In Kuskokwim River chum salmon, the top model for g1 (no expected competition) 

contained only a positive correlation with summer SST. Summer SST appeared in all of the best-

supported models for g1 (those within two AICc units of the top model; Table 1). Three of the six 

best-supported models included salmon abundance indices, but in all cases the coefficients were 

positive and small (Figure 3). The null model for g1 was >9 AICc units above that of the top 

model (Supplementary Information, Table S3). 

After the first year at sea, Kuskokwim River chum salmon growth decreased with 

increasing abundance of Japanese chum salmon (Figure 4); additionally, faster growth was 

associated with males and earlier-maturing individuals (Table 1). All of the best-supported 

models for growth increments g2 – g4 included a negative correlation with Japanese chum salmon 
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abundance (Table 1). The coefficients for Japanese chum salmon abundance were consistently 

more negative than those for Kamchatka pink salmon abundance, and null models were > 100 

AICc units away from the top models (Supporting Information, Table S3). Coefficients for 

Kamchatka pink salmon abundance and its interaction with Japanese chum salmon abundance 

differed among the growth increments (Figure 3). For g2, the coefficient for Kamchatka pink 

salmon abundance was slightly positive (included only in the fourth-ranked model), and no 

interaction between Japanese chum salmon and Kamchatka pink salmon abundances appeared in 

any of the best-supported models. In contrast, the coefficient for pink salmon abundance was 

consistently negative for both g3 and g4, and a positive interaction between the two salmon 

abundance indices appeared in the three highest-ranking models for g3 and in the fourth-ranked 

model for g4. 

Sea-surface temperature appeared in many of the best-supported models for increments 

g2 – g4 in Kuskokwim River chum salmon, but differed among increments (Supplementary 

Information, Table S3). For g2, the top model did not contain SST, but a negative correlation 

with spring SST was included in the second-ranked model, a positive correlation with summer 

SST was in the third-ranked model, and the fifth-ranked model contained both spring and 

summer SST. Positive coefficients for spring SST appeared in the top models for both g3 and g4, 

while summer SST (with positive coefficients) appeared only in the third-ranked model for g3 

and the sixth- and seventh-ranked models for g4. 

Estimated parameters from the models for growth increments g2 – g4 in Bering Sea chum 

salmon with and without accounting for decreased hatchery releases in 2011-2013 are shown in 

Table 2. For g2 and g4, the simpler model without the reduced-release period was preferred 

(likelihood-ratio tests, P > 0.5). For g3, the model with the reduced-release period was preferred 

(P = 0.04), but its coefficient was negative, opposite of the hypothesized effect. As in the 

Kuskokwim dataset, faster growth was associated with males and younger fish. Growth during g2 

– g4 was positively related to spring SST, but coefficients were < 0.20 (Table 2). 

4 | DISCUSSION 

Based on hypothesized competitive effects of wild Kamchatka populations of pink 

salmon and chum salmon released by Japanese hatcheries, we expected reduced growth of 
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western Alaska chum salmon after their first year at sea during periods of high abundance of 

these Asian salmon stocks. We found strong support that chum salmon returning to the 

Kuskokwim River compete with Japanese chum salmon, as evidenced by the negative 

correlation between the size of hatchery releases and marine growth (g2 – g4), and the absence of 

such a correlation with g1, in chum salmon returning to the Kuskokwim River 1963-2010. 

Despite the hypothesis that pink salmon are strong competitors with profound consequences on 

marine food webs (Ruggerone & Nielsen, 2004; Springer et al., 2018), the effect of eastern 

Kamchatka pink salmon on Kuskokwim River chum salmon growth was modest compared to the 

effect of Japanese chum salmon. Agler et al. (2013) examined g1 and g3 in chum salmon 

returning to the Yukon River, to the north of the Kuskokwim River, and to Bristol Bay to the 

south. They similarly detected a greater competitive effect of Asian chum salmon than Asian 

pink salmon on g3 (and no effect on g1). Our results suggest that these findings might be broadly 

applicable to chum salmon populations from across western Alaska. 

We detected no negative effect of eastern Kamchatka pink salmon abundance on growth 

of Kuskokwim River chum salmon during their second year at sea, but we did find evidence for 

competitive effects on later marine growth. This was particularly apparent in g3, for which three 

of the four best-supported models included a positive interaction between eastern Kamchatka 

pink salmon abundance and the magnitude of Japanese hatchery chum salmon releases. The 

interaction indicated that Kuskokwim River chum salmon g3 growth was particularly poor in 

years when the combined abundance of these two stocks was particularly high. Chum salmon are 

able to mitigate competition with pink salmon by feeding on gelatinous zooplankton not targeted 

by other salmon (Tadokoro, Ishima, Davis, Ueyenagi, & Sugimoto, 1996). However, as chum 

salmon grow they consume more fish (Karpenko, Volkov, & Koval, 2007), so perhaps by their 

third year at sea Kuskokwim River chum salmon are less able to switch diets in order to avoid 

competition with pink salmon, particularly in years when Japanese chum salmon is also 

abundant. Chum salmon might adjust their oceanic distribution southward to avoid pink salmon 

(Azumaya & Ishida, 2000), but perhaps during later growth years, homeward migration 

pathways prevent Kuskokwim River chum salmon from doing so. 

While Kuskokwim River chum salmon appear to compete with Japanese hatchery chum 

salmon, a steady increase in hatchery production through the 1990s followed by little variation 

has provided limited contrast for quantifying the extent of competition. We used a rapid decrease 
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in Japanese hatchery chum salmon production in 2011-2013 to contrast growth of chum salmon 

intercepted in the Bering Sea during periods of normal (2001-2011) and low (2012-2016) 

Japanese hatchery chum salmon releases. Contrary to our expectations and to our findings with 

the Kuskokwim River dataset over a longer period, chum salmon in the Bering Sea did not 

exhibit increased growth following the reduction in Japanese hatchery chum salmon production. 

This contradiction could be resolved in several ways.  First, the reduction in Japanese hatchery 

chum salmon outputs may have been too small to cause a detectable effect on growth of chum 

salmon in the Bering Sea. Second, our Bering Sea samples came from the Alaskan walleye 

pollock trawl fishery. If these samples were size selective, changes in growth might have gone 

undetected with this method of sampling. Finally, we observed a substantial increase in wild 

chum salmon abundance over the study period for the Bering Sea dataset (2001-2016). Wild 

Russian chum salmon increased by 264% from 2005-2015, reducing the proportion of hatchery 

chum salmon from 62% in 2005 to 45% of total chum salmon abundance in 2015 (Ruggerone & 

Irvine, 2018). Russian chum salmon follow an ocean migration pattern similar to that of Japanese 

and western Alaska chum salmon (Urawa et al., 2009), and thus in the years that western Alaska 

chum salmon were hypothesized to have experienced relief from competition with Japanese 

hatchery chum salmon, they might have experienced increased competition with Russian chum 

salmon. Future analyses of chum salmon growth should account for the abundance of Russian 

chum salmon populations in addition to Japanese hatchery chum salmon. 

The relationship between chum salmon growth and spring and summer SST in the Bering 

Sea was smaller than expected. However, previous research has shown that the effects of SST on 

chum salmon growth are variable. In southeast Alaska, Yasumiishi et al. (2016) observed a 

positive relationship between g2 growth and cooler summer/fall SST, but after accounting for 

density-dependent effects (growth was more strongly correlated with population abundance), 

growth was positively associated with SST. In contrast, Agler et al. (2013) observed a negative 

relationship between western Alaska chum salmon growth and Gulf of Alaska SST. Analysis of 

Kwiniuk River chum salmon in Norton Sound, western Alaska, detected no correlation between 

g2 - g4 scale growth in four- and five-year old chum salmon and SST in the North Pacific Ocean 

during winter, spring, or summer (Ruggerone & Agler, 2008). These contradictory findings 

suggest that the relationship between salmon growth and SST is complex and may not be linear 

across the range of variation experienced by chum salmon populations across years. Our 
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understanding might be limited by lack of information on population-specific ocean 

distributions. Furthermore, the diving behavior of chum salmon (Azumaya & Nagasawa, 2009) 

suggests that temperature measured at the ocean’s surface may not be the best proxy for 

environmental conditions affecting salmon growth and age/size trends (G. Brown, Department of 

Fisheries and Oceans Canada, pers. comm.). 

Both Kuskokwim River and Bering Sea chum salmon experienced decreases in growth 

during a time of maximum releases of chum salmon by Japanese hatcheries. Similar size declines 

have been observed in chum salmon populations throughout the Pacific Rim, including Russia, 

Japan, Canada, and the United States (e.g., Ishida et al., 1993; Bigler, Welch, & Helle, 1996; 

Zavolokin, Zavolokina, & Khokhlov, 2009; Ruggerone et al., 2011; Yasumiishi et al., 2016), 

pointing to shared causes in the North Pacific. Density-dependent effects of Asian hatchery chum 

salmon have been detected on both North American (Helle, Martinson, Eggers, & Gritsenko, 

2007; Ruggerone et al., 2011; Agler et al., 2013) and Asian (Ishida et al., 1993; Zaporozhets & 

Zaporozhets, 2004) chum salmon populations. In western Alaska, increased production of Asian 

hatchery chum salmon was significantly related to reduced adult length at age, productivity, and 

delayed age at maturity of Norton Sound chum salmon (Ruggerone et al., 2011). The reduced 

growth of Kuskokwim chum salmon we observed during g2 may contribute to increases in chum 

salmon age at maturity, as slower growing salmon tend to mature at an older age (Morita et al., 

2005; Siegel, McPhee, & Adkison, 2017). Unfortunately, the abundance and age data collected 

from chum salmon returning to the Kuskokwim River were of insufficient quality for estimating 

age composition by brood year (H. Hamazaki, ADF&G, pers. comm.), so we were unable to 

directly test this hypothesis. 

Testing for density dependence in the open ocean is difficult, but our analyses provide 

insight into the potentially adverse consequences of increasing hatchery salmon outputs into the 

North Pacific ecosystem. Over the longer time series afforded by the Kuskokwim River chum 

salmon scale collection, we found strong support for competitive effects of Japanese hatchery 

chum salmon and to a lesser extent, competitive effects of wild pink salmon from eastern 

Kamchatka. That we did not observe increased growth of Bering Sea chum salmon when the 

production of Japanese hatchery chum salmon was reduced in 2011-2013 may be because 

decreases in hatchery outputs were too small to detect a difference in growth, or because the 

recent increase in wild Russian chum salmon abundance overwhelmed any reduction in Japanese 
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chum salmon abundance. Our study was limited to examining competition with two major Asian 

stocks of salmon, Japanese hatchery chum salmon and eastern Kamchatka pink salmon, which 

collectively have comprised up to 52% of Asian pink, chum, and sockeye salmon, and up to 46% 

of these species in the Bering Sea (based on data in Ruggerone & Irvine, 2018). Western Alaska 

chum salmon could also compete with other stocks in the Bering Sea, for example, wild pink and 

sockeye salmon from western Alaska. Future work could incorporate the combined effects of 

competition from multiple stocks, although including North American stocks would complicate 

hypotheses about growth during the first year at sea. Despite the limited focus, our study adds to 

the cumulative evidence indicating that Pacific salmon can experience density dependence in the 

North Pacific and Bering Sea ecosystems, suggesting that hatchery production cannot continue to 

increase without some detrimental consequences for wild salmon populations. 
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FOG_12505 Figure legends 

FIGURE 1 Study area (a) and image of chum salmon scale (b). On (a), location of Kuskokwim 
River chum salmon sampling is shown in black oval, and region of Bering Sea chum salmon 
bycatch sampling is shown in grey oval. The M2 buoy where spring SST was measured is shown 
by an asterisk (56.87oN, 164.06oW), and the rectangle shows the region over which summer SST 
in the central Bering Sea (54.3o-60.0oN, 170.6o-178.1oW) was averaged. On (b) the annual 
growth increments are shown, depicting the first (g1), second (g2), and third (g3) years of growth 
at sea; annuli are marked by black bars. 

FIGURE 2 Annual variation, 1965-2013, in variables used to model Kuskokwim River chum 
salmon growth: a) Japanese hatchery chum salmon abundance; b) eastern Kamchatka pink 
salmon abundance; c) spring SST at M2 buoy; and d) summer SST in the Central Bering Sea. 

FIGURE 3 Coefficients and standard errors for salmon abundance indices in best-supported 
models (ΔAICc < 2; see Table 1) for the size of Kuskokwim River chum salmon growth 
increments g1 – g4. c In each pane, coefficients are arranged in descending order of model 
support, with the top model (ΔAICc = 0) at the top of each plot pane. Jpn. = Japanese, E. Kam = 
eastern Kamchatka. The top model for g1 contained no salmon abundance index. 

FIGURE 4 Scale growth of Kuskokwim River chum salmon, averaged over both males and 
females, versus normalized abundance of Japanese chum salmon by growth increment and age. 
Solid line and filled circles, four-year olds; dashed line and open circles, five-year olds. 
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 Growth increment  
  g1  g2  g3  g4 

 Intercept -0.03 (0.06)  0.29 (0.07)  0.35 (0.07)  -0.12 (0.06)  
 
Japanese chum  --- -0.27 (0.07)  -0.18 (0.07)  -0.17 (0.06)  
Kamchatka pink  --- --- -0.09 (0.07)  -0.07 (0.05)  

 Chum * pink --- --- 0.23 (0.10)  --- 
 Sex (male) --- 0.12 (0.03)  0.38 (0.03)  0.45 (0.04)  

Age (5)  --- -0.57 (0.03)  -0.97 (0.03)   n/a 
 Spring SST --- --- 0.09 (0.06)  0.08 (0.05)  

 Summer SST 
σ2  W 

0.20 (0.06)  
 0.139 

--- 
 0.197 

--- 
 0.148 

--- 
 0.089 

σ2  A  0.857  0.684  0.601  0.844 
 
 

TABLE 1  Coefficients (and their standard errors) from top models for scale growth increments  
in Kuskokwim River chum salmon. A “—“ indicates that a variable was considered in the full  
candidate model but not included in top model. Variances within (σ2 ) and among (σ2

W A) calendar  
year at sea are also reported.  



 
Increment/    g2 (n = 1,733)   g3 (n = 1,451)   g4 (n = 316) 

 model  with  without  with  without  with  without 
 Intercept 0.84 (0.14)  0.82 (0.13)  1.32 (0.19)  1.36 (0.19)  -0.18 (0.14)  -0.08 (0.13)  

Reduced release 0.10 (0.11)   -0.20 (0.10)   -0.30 (0.17)   
 period 

 Sex (male) 0.09 (0.05)  0.09 (0.05)  0.21 (0.05)  0.21 (0.05)  0.16 (0.11)  0.16 (0.11)  
Age (5)  -0.27 (0.04)  -0.27 (0.04)  -0.46 (0.05)  -0.47 (0.05)    

 Spring SST 
σ2  W 

0.16 (0.08)  0.16 (0.07)  
 0.060  0.058 

0.13 (0.07)  0.13 (0.08)  
 0.050  0.064 

0.11 (0.12)  0.11 (0.13)  
 0.126  0.152 

σ2  A  0.915  0.915  0.865  0.865   
LRT (χ2, df, P)   1.02, 1, P = 0.31   4.40, 1, P = 0.04   3.43, 1, P = 0.06  

 
 

TABLE 2  Coefficients (and standard errors) from models for  growth increments  g2  – g 4  in Bering Sea chum salmon, as well as  
number of individuals (n) and results of likelihood-ratio test (LRT)  comparing  the model that included the period  of reduced  hatchery  
releases  (2011-2013; ‘with’) to the model  that did not (‘without’). Variances within (σ2 2

W) and among (σ A) calendar  year at sea are 
also reported.  



Brood year  Age 4  Age 5   Total 
  Male Female   Male Female   

 1963 
 1968 
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 1970
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 1972 
 1973 
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 1976 
 1977 
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 1980
 1981 
 1982 
 1983 
 1984 
 1985 
 1986 
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 1988 
 1989 
 1990
 1991 
 1992 
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 1994 
 1995 
 1996 
 1997 
 1998 
 1999 
 2000
 2001 
 2002 
 2003 
 2004 
 2005 
 2006 
 2007 
 2008 
 2009 
 2010

5  
 15 

2  
 18 
 18 
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 23 
 25 
 25 
 21 
 23 
 24 
 25 
 26 
 25 
 25 
 25 
 25 
 23 
 25 
 22 
 25 
 25 
 25 
 25 
 23 
 22 
 15 
 23 
 18 
 25 
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 25 
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 17 
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 16 
 22 
 24 
 18 
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 21 
 25 
 18 
 24 
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 25 
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 25 
 25 
 24 
 16 
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 21 
 22 
 24 
 25 
 25 
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 25 
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 25 
 25 
 25 
 28 
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 18 

1  
 16 
 13 
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5  
5  

 25 
 14 
 24 
 21 
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 24 
 25 
 25 
 25 
 25 
 24 
 25 
 25 
 24 
 25 
 24 
 25 
 25 
 23 
 18 
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 20 
 22 
 24 
 25 
 25 

6  
 25 
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 28 
 31 
 35 
 13 
 33 

0  

3  
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4  
1  

 13 
 15 
 19 
 19 
 25 
 19 
 24 
 23 
 28 
 25 
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 25 
 23 
 25 
 25 
 24 
 25 
 24 
 25 
 25 
 25 
 23 
 23 
 25 
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 25 

2  
 25 
 26 
 34 
 26 
 25 
 17 
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0  

 15 
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 12 
 51 
 66 
 80 
 63 
 70 
 96 
 83 
 87 
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 100 

 98 
 99 
 97 
 99 
 96 
 99 
 99 
 100 
 100 

 93 
 79 
 84 
 83 
 86 
 95 
 92 
 100 

 59 
 97 
 101 
 112 
 107 
 110 

 83 
 119 

 58 

TABLE S1  Number of Kuskokwim River chum salmon scales measured from 1963, 
1968-2010 by brood year, age at maturity, and sex.  



 
 

     
 

 
 

   
           

            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            

 
 

TABLE S2 Number of Bering Sea chum salmon scales measured by brood year, sex, and 
growth increment. Note that each growth increment is tallied separately, so a 5-year old 
individual would be represented in each of the columns g1 – g4. 

Brood 
year 

Female Male Grand 
Total g1 g2 g3 g4 Total g1 g2 g3 g4 Total 

1996 7 7 7 7 7 8 8 8 8 8 15 
1997 21 21 21 6 21 22 22 22 6 22 43 
1998 24 24 20 5 24 26 26 23 8 26 50 
1999 57 57 49 11 57 69 69 56 10 69 126 
2000 29 29 24 4 29 56 56 51 11 56 85 
2001 84 84 74 23 84 91 91 81 22 91 175 
2002 67 67 48 13 67 49 49 40 9 49 116 
2003 32 32 29 6 32 42 42 36 8 42 74 
2004 31 31 27 16 31 37 37 33 15 37 68 
2005 55 55 51 4 55 72 71 71 8 72 127 
2006 54 54 36 19 54 64 64 47 24 64 118 
2007 80 80 76 5 80 80 79 72 10 80 160 
2008 29 29 14 6 29 41 41 17 10 41 70 
2009 58 57 55 8 58 57 57 54 6 57 115 
2010 34 34 31 5 34 53 53 50 8 53 87 
2011 66 66 57 14 66 68 68 60 16 68 134 
2012 104 104 74 104 120 120 95 120 224 
2013 21 21 21 36 36 36 57 
2014 1 1 1 



       
 

 
  

     
 

      
    

     
    
    
     

    
     

     
    

    
     
       

      
     
        

     
    

    
        
     

      
     

     
    

    
        
       

       
       

     
        

        
     

Table S3. Model selection for counterfactual g1 and focal growth increments g2 – g4, for 
Kuskokwim River chum salmon. Models within 2 ΔAICc units are shown, as well as the 
null (random effect only) model. SprSST, spring SST; SumSST, summer SST; JpnChum, 
index of Japanese chum salmon abundance; KamPink, index of Kamchatka pink salmon 
abundance. Sign of coefficient is indicated by +/- for each of the modeled fixed effects. 

Modeled variables df 
g1 (counterfactual) 
SumSST 4 
SumSST + KamPink 5 
SumSST + JpnChum 5 
SumSST + JpnChum + KamPink 6 
Sex + SumSST 5 
-SprSST + SumSST 5 
Null (random effect only) 3 

g2 
Sex + Age - JpnChum 6 
Sex + Age - SprSST - JpnChum 7 
Sex + Age + SumSST - JpnChum 7 
Sex + Age - JpnChum + KamPink 7 
Sex + Age – SprSST + SumSST - JpnChum 8 
Null (random effect only) 3 

g3 
Sex + Age + SprSST + (-JpChum*-KmPink) 9 
Sex + Age + (-JpnChum*-KmPink) 8 
Sex + Age + SprSST + SumSST + (-JpnChum*-KamPink) 10 
Sex + Age - JpnChum 6 
Null (random effect only) 3 

g4 
Sex + SprSST - JpnChum - KamPink 7 
Sex + SprSST - JpnChum 6 
Sex  - JpnChum - KamPink 6 
Sex + SprSST + (-JpnChum*-KamPink) 8 
Sex - JpnChum 5 
Sex + SumSST - JpnChum - KamPink 7 
Sex + SprSST + SumSST - JpnChum - KamPink 8 
Null (random effect only) 3 

logLik ΔAICc 

-5065.24 
-5064.41 
-5064.77 
-5064.16 
-5064.23 
-5065.24 
-5070.90 

0 
0.35 
1.06 
1.85 
1.98 
1.999 
9.32 

-4666.56 
-4666.21 
-4666.38 
-4666.41 
-4666.43 
-4878.61 

0 
1.29 
1.64 
1.69 
1.74 
418 

-4419.48 
-4420.80 
-4419.33 
-4423.35 
-5096.71 

0 
0.64 
1.72 
1.73 
1342 

-2422.70 
-2423.95 
-2424.09 
-2422.10 
-2425.52 
-2423.53 
-2422.66 
-2480.56 

0 
0.49 
0.77 
0.84 
1.61 
1.67 
1.96 
108 



 
 

 
  

  
 

  

FIGURE S1. Temporal trends in average growth by increment and age for Kuskokwim 
River chum salmon. a) g1; b) g2; c) g3; d) g4. Solid line, four-year olds; dashed line, five-
year olds. 



 

 
 

 

 
 

 

FIGURE S2. Temporal trends in average  growth by increment  Bering Sea  chum salmon. 
a)  g1; b) g2; c)  g3; d) g4.  
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